17,241 research outputs found

    Excited-state quantum phase transitions in a two-fluid Lipkin model

    Get PDF
    Background: Composed systems have became of great interest in the framework of the ground state quantum phase transitions (QPTs) and many of their properties have been studied in detail. However, in these systems the study of the so called excited-state quantum phase transitions (ESQPTs) have not received so much attention. Purpose: A quantum analysis of the ESQPTs in the two-fluid Lipkin model is presented in this work. The study is performed through the Hamiltonian diagonalization for selected values of the control parameters in order to cover the most interesting regions of the system phase diagram. [Method:] A Hamiltonian that resembles the consistent-Q Hamiltonian of the interacting boson model (IBM) is diagonalized for selected values of the parameters and properties such as the density of states, the Peres lattices, the nearest-neighbor spacing distribution, and the participation ratio are analyzed. Results: An overview of the spectrum of the two-fluid Lipkin model for selected positions in the phase diagram has been obtained. The location of the excited-state quantum phase transition can be easily singled out with the Peres lattice, with the nearest-neighbor spacing distribution, with Poincar\'e sections or with the participation ratio. Conclusions: This study completes the analysis of QPTs for the two-fluid Lipkin model, extending the previous study to excited states. The ESQPT signatures in composed systems behave in the same way as in single ones, although the evidences of their presence can be sometimes blurred. The Peres lattice turns out to be a convenient tool to look into the position of the ESQPT and to define the concept of phase in the excited states realm

    Ricci Solitons on Lorentzian Manifolds with Large Isometry Groups

    Full text link
    We show that Lorentzian manifolds whose isometry group is of dimension at least 12n(n1)+1\frac{1}{2}n(n-1)+1 are expanding, steady and shrinking Ricci solitons and steady gradient Ricci solitons. This provides examples of complete locally conformally flat and symmetric Lorentzian Ricci solitons which are not rigid

    Semiempirical Modeling of Reset Transitions in Unipolar Resistive-Switching based Memristors

    Get PDF
    We have measured the transition process from the high to low resistivity states, i.e., the reset process of resistive switching based memristors based on Ni/HfO2/Si-n+ structures, and have also developed an analytical model for their electrical characteristics. When the characteristic curves are plotted in the current-voltage (I-V) domain a high variability is observed. In spite of that, when the same curves are plotted in the charge-flux domain (Q-phi), they can be described by a simple model containing only three parameters: the charge (Qrst) and the flux (rst) at the reset point, and an exponent, n, relating the charge and the flux before the reset transition. The three parameters can be easily extracted from the Q-phi plots. There is a strong correlation between these three parameters, the origin of which is still under study

    FeNi-based magnetoimpedance multilayers: Tailoring of the softness by magnetic spacers

    Full text link
    The microstructure and magnetic properties of sputtered permalloy films and FeNi(170 nm)/X/FeNi(170 nm) (X=Co, Fe, Gd, Gd-Co) sandwiches were studied. Laminating of the thick FeNi film with various spacers was done in order to control the magnetic softness of FeNi-based multilayers. In contrast to the Co and Fe spacers, Gd and Gd-Co magnetic spacers improved the softness of the FeNi/X/FeNi sandwiches. The magnetoimpedance responses were measured for [FeNi/Ti(6 nm)] 2/FeNi and [FeNi/Gd(2 nm)] 2/FeNi multilayers in a frequency range of 1-500 MHz: for all frequencies under consideration the highest magnetoimpedance variation was observed for [FeNi/Gd(2 nm)] 2/FeNi multilayers. © 2012 American Institute of Physics

    A Resonant soft x-ray powder diffraction study to determine the orbital ordering in A-site ordered SmBaMn2O6

    Full text link
    Soft X-ray resonant powder diffraction has been performed at the Mn L2,3 edges of A-site ordered SmBaMn2O6. The energy and polarization dependence of the (1/2 1/2 0) reflection provide direct evidence for a (x2-z2)/(y2-z2) type orbital ordering in contrast to the single layer manganite. The temperature dependence of the reflection indicates an orbital reorientation transition at 210 K, below which the charge and orbital ordered MnO2 sheets show AAAA type of stacking. The concurring reduction of the ferromagnetic super exchange correlations leads to further charge localization
    corecore